Stereoselective Synthesis of 5-Substituted Pyrrolo[1,2-c]imidazol-3-ones: Access to Annulated Chiral Imidazol(in)ium Salts

Costa Metallinos* and Shufen Xu

Department of Chemistry, Brock University, 500 Glenridge Avenue, St. Catharines, Ontario L2S 3A1, Canada

cmetallinos@brocku.ca

Received October 1, 2009

ABSTRACT

A two-step synthesis of *N***-heterocyclic carbene (NHC) precatalysts by diastereoselective or enantioselective lithiation of pyrrolo[1,2-c]imidazol-3-ones followed by POCl3-induced salt formation is described. The resulting 3-chloro-pyrroloimidazol(in)ium salts may be coordinated to palladium(II) upon NHC generation with** *t***-BuLi at low temperature. The method may facilitate exploitation of these compounds as chiral organocatalysts or ligands in metal catalysis.**

Pyrroloimidazoles (**1**, Figure 1) resemble plant-derived pyrrolizidine alkaloids¹ (e.g., 2) and constitute a small but potent class of biologically active molecules. Compounds with a framework represented by **1** have anxiolytic proper $ties²$ and exhibit nanomolar inhibitory activity against aldostereone synthase and aromatase. 3 As such, they may be useful in the treatment of hypoalkemia, hypertension, and congestive heart failure. Previous syntheses of α -arylated pyrroloimidazoles give racemic products that require resolution of the constituent enantiomers, which often differ in their levels of efficacy.3

Compounds with a pyrroloimidazol(in)e skeleton have also been used as guanidine organocatalysts⁴ (e.g., 3), although these do not possess stereogenic centers in the same place as **1**. More appropriate structural comparisons can be made to chiral *N*-heterocyclic carbene (NHC) precatalysts such as triazolium (4) and thiazolium (5) salts.⁵ However, the related imidazol(in)ium salts⁶ (6) are more challenging to prepare and to date have limited structural diversity because they originate from *syn*-1,2-aminoalcohols.⁷ Development of a stereoselective synthesis of pyrroloimidazol(in)es, which contain one or two stereogenic centers α to nitrogen in the pyrrolidine ring, would provide access to biologically active compounds and serve to increase the number of annulated C_1 -symmetric imidazol(in)ium derived NHCs.⁸ The latter may be useful precursors to nucleophilic or transition metal catalysts.

⁽¹⁾ Huang, J.-M.; Hong, S.-C.; Wu, K.-L.; Tsai, T.-M. *Tetrahedron Lett.* **2004**, *45*, 3047, and references therein.

^{(2) (}a) Fontanella, L.; Corsico, N.; Diena, A.; Occelli, E. *Farmaco, Ed. Sci.* **1984**, *39*, 133. (b) Fontanella, L.; Occelli, E.; Perazzi, A. *Farmaco, Ed. Sci.* **1973**, *28*, 463. (c) Fontanella, L.; Occelli, E. *Farmaco, Ed. Sci.* **1971**, *26*, 685.

^{(3) (}a) Ksander, G. M.; Meredith, E.; Monovich, L. H.; Papillon, J.; Firooznia, F.; Hu, Q. WO 024945 (2007). (b) Browne, L. J.; Gude, C.; Rodriguez, H.; Steele, R. E. *J. Med. Chem.* **1991**, *34*, 725.

⁽⁴⁾ Isobe, T.; Fukuda, K.; Ishikawa, T. *J. Org. Chem.* **2000**, *65*, 7770.

^{(5) (}a) DiRocco, D. A.; Oberg, K. M.; Dalton, D. M.; Rovis, T. *J. Am. Chem. Soc.* **2009**, *131*, 10872. (b) Rovis, T. *Chem. Lett.* **2008**, *37*, 2. (c) de Alaniz, J. R.; Kerr, M. S.; Moore, J. L.; Rovis, T. *J. Org. Chem.* **2008**, *73*, 2033. (d) Enders, D.; Niemeier, O.; Henseler, A. *Chem. Re*V*.* **²⁰⁰⁷**, *¹⁰⁷*, 5606. (e) Christmann, M. *Angew. Chem., Int. Ed.* **2005**, *44*, 2632. (f) Perry, M. C.; Burgess, K. *Tetrahedron: Asymmetry* **2003**, *14*, 951. (g) He, L.; Zhang, Y.-R.; Huang, X.-L.; Ye, S. *Synthesis* **2008**, 2825.

^{(6) (}a) Nair, V.; Vellalath, S.; Babu, B. P. *Chem. Soc. Re*V*.* **²⁰⁰⁸**, *³⁷*, 2691. (b) Nair, V.; Babu, B. P; Vellalath, S.; Varghese, V.; Raveendran, A. E.; Suresh, E. *Org. Lett.* **2009**, *11*, 2507. (c) Nair, V.; Vellalath, S.; Poonoth, M.; Suresh, E. *J. Am. Chem. Soc.* **2006**, *128*, 8736. (d) Nair, V.; Bindu, S.; Sreekumar, V. *Angew. Chem., Int. Ed.* **2004**, *43*, 5130.

^{(7) (}a) Struble, J. R.; Kaeobamrung, J.; Bode, J. W. *Org. Lett.* **2008**, *10*, 957. (b) Struble, J. R.; Bode, J. W. *Tetrahedron* **2008**, *64*, 6961. Review: (c) Arduengo, A. J.; Iconaru, L. I. *Dalton Trans.* **2009**, 6903.

Figure 1. Examples of compounds with pyrroloimidazol(in)e (**1**, **3**, **6**), pyrrolizidine (**2**), triazoline (**4**), and thiazoline (**5**) frameworks.

Previously, we demonstrated that annulated chiral benzimidazolium salts could be obtained from **7** (Scheme 1), in which a fused urea served as a directing group for enantioselective lithiation of the piperidyl ring.⁹ It was envisioned that this method could be extended to pyrroloimidazol(in)- 3-ones. This approach is based on the known ability of *N*-Boc pyrrolidine (**9**) to undergo enantioselective lithiation-substitution with $(-)$ -sparteine to give products in good yields and enantiomeric purity.¹⁰ Recently, this method has become more versatile by the development of $(+)$ -sparteine surrogates¹¹ (e.g., $\overline{12}$ and $\overline{13}$) and the ability to install aromatic substituents α to nitrogen.¹² Moreover, cyclic carbamates (e.g., **14**) have been shown to undergo diastereoselective lithiation to give exclusively *syn*-configured products **15** in good yields.13

To begin our investigations, the required starting materials were prepared from *t*-Bu amide **16** (Scheme 2), which was obtained from Cbz-protected L-proline by standard methods.¹⁴ Removal of the Cbz group (cyclohexene, Pd/C) and reduction of the amide (LiAlH₄) gave a volatile diamine that, without purification, was converted to urea **17** with triphosgene. The unsaturated congener **19** was prepared by reduction of **16** with LiAlH4, which gave **18** as an epimeric mixture of hemiaminals. Addition of dilute acid (0.1 M aqueous HCl) to this mixture induced elimination of water to afford urea **19** in good overall yield.

With respect to diastereoselective lithiation of **17**, computational minimization¹⁵ indicated that the distances between the urea oxygen and the pro- S or pro- R α -methylene

(8) For R-chiral annulated NHCs in transition metal catalysis, see: (a) Metallinos, C.; Du, X. *Organometallics* **2009**, *28*, 1233. (b) Metallinos, C.; Barrett, F. B.; Wang, Y.; Xu, S.; Taylor, N. J. *Tetrahedron* **2006**, *62*, 11145. (c) Würtz, S.; Lohre, C.; Fröhlich, R.; Bergander, K.; Glorius, F. *J. Am. Chem. Soc.* **2009**, *131*, 8344. (d) Glorius, F.; Altenhoff, G.; Goddard, R.; Lehmann, C. *Chem. Commun.* **2002**, 2704. (e) Baskakov, D.; Herrmann, W. A.; Herdtweck, E.; Hoffmann, S. D. *Organometallics* **2007**, *26*, 626. (9) Metallinos, C.; Dudding, T; Zaifman, J.; Chaytor, J. L.; Taylor, N. J. *J. Org. Chem.* **2007**, *72*, 957.

Chem. **2004**, *69*, 6042. (c) O'Brien, P. *Chem. Commun.* **2008**, 655.

(12) (a) Campos, K. R.; Klapars, A.; Waldman, J. H.; Dormer, P. G.; Chen, C.-Y. *J. Am. Chem. Soc.* **2006**, *128*, 3538. (b) O'Brien, P.; Bilke, J. L. *Angew. Chem., Int. Ed.* **2008**, *47*, 2734.

(13) Bertini Gross, K. M.; Beak, P. *J. Am. Chem. Soc.* **2001**, *123*, 315.

hydrogens of the pyrrolidine ring were 2.51 and 3.69 Å, respectively. The difference between these distances (1.18 Å) is greater than what was calculated for cyclic carbamate **14**¹³ (0.92 Å based on $\mathbf{O}\cdot\cdot\mathbf{H}_{\text{S}} = 2.78$ Å and $\mathbf{O}\cdot\cdot\mathbf{H}_{\text{R}} = 3.70$ Å), suggesting that α -lithiation of 17 would be at least as selective as **14**.

Scheme 2. Synthesis of Chiral Urea **17** and Achiral Urea **19**

Accordingly, deprotonation of **17** (1.1 equiv *s*-BuLi, TMEDA, Et₂O, -78 °C) followed by addition of benzophenone gave **20a** as a single diastereomer in 60% yield (Scheme 3). Several other substituents were introduced into the 5-position with equal facility, including methyl (55%), allyl (50%), trimethylsilyl (63%) and trimethylstannyl (55%). All of the preceding products were obtained as single diastere-

^{(10) (}a) Kerrick, S. T.; Beak, P. *J. Am. Chem. Soc.* **1991**, *113*, 9708. (b) Beak, P.; Kerrick, S. T.; Wu, S.; Chu, J. *J. Am. Chem. Soc.* **1994**, *116*, 3231. (c) Hoppe, D.; Hense, T. *Angew. Chem., Int. Ed.* **1997**, *36*, 2282.

^{(11) (}a) Stead, D.; O'Brien, P.; Sanderson, A. *Org. Lett.* **2008**, *10*, 1409. (b) Mealey, M. J.; Luderer, M. R.; Bailey, W. F.; Sommer, M. B. *J. Org.*

^{(14) (}a) Corma, A.; Iglesias, M.; del Pino, C.; Sa´nchez, F. *J. Organomet. Chem.* **1992**, *431*, 233. (b) Corey, E. J.; Saizo, S.; Bakshi, R. K. *J. Org. Chem.* **1988**, *53*, 2861.

⁽¹⁵⁾ Compound **17** was minimized at the B3LYP/6-31G(d) level as implemented in Gaussian 03.

omers, which entails a diastereomeric ratio (dr) of >95:5 for the α -lithio intermediate before electrophile quench. The *syn* relative stereochemistry of products **20a**, **20b**, **20c**, and **20e** were verified by NOESY or 1-D NOE spectroscopy, which is consistent with the stereochemistry of products **15**. That the α -carbanion of 17 had configurational stability at -78 °C was demonstrated by transmetalation of stannane **20e** (*n*-BuLi, Et₂O, 4.5 h), which upon Me₂SO₄ quench gave *syn*-**20b** exclusively.

For enantioselective lithiation of **19**, several alkyllithiumligand-solvent combinations were evaluated by examining the product of benzophenone quench of the putative α -carbanion (**21a**, Scheme 4). The best result was obtained using *ⁱ*-PrLi/(-)-sparteine in MTBE solvent, which provided **21a** in 67% yield and 90.5:9.5 enantiomeric ratio (81% ee). The combination of *i*-PrLi and $(+)$ -sparteine surrogate 13 in Et₂O afforded the antipode of **21a** in 60% yield and 14.5:85.5 er (71% ee).

Applied to other electrophiles (Scheme 5), the optimum *i*-PrLi/(-)-sparteine/MTBE conditions gave Me, allyl, and 78 stannyl derivatives **21b**-**^d** in higher enantiomeric purity (94:6 to 99:1 er; 88-98% ee) and yields ranging from ⁶³-76%. Phenylation according to the procedure described for *N*-Boc pyrrolidine¹² afforded 21e in lower yield (30%) but similar enantiomeric purity (93.5:6.5 er; 87% ee).

The absolute stereochemistry of **21b** was determined by reduction of the enamine (NaBH3CN, MeOH/AcOH, reflux), which gave a mixture of *anti*- and *syn*-**20b**. *Syn*-**20b** had the same specific rotation ($[\alpha]_D^{20} - 4$) as **20b** derived from
17 $([\alpha]_2^{20} - 44)$ The relative stereochemistry of *anti*-20b **17** ($[\alpha]_D^{20} -4.4$). The relative stereochemistry of *anti*-**20b**
was verified by 1.D NOF experiments ¹⁶ In addition was verified by 1-D NOE experiments.¹⁶ In addition, transmetalation of stannane 21d (*n*-BuLi, THF, -100 °C) and quench with $Me₂SO₄$ gave 21b with the same optical rotation as **21b** made directly from **19**. Based on these results and the expectation that the enantioselectivity during $(-)$ sparteine-mediated lithiation of **19** arises from an asymmetric deprotonation step, 10 the same relative stereochemistry may be tentatively assigned to all products **21a**-**e**.

^a via CuCN · 2LiCl transmetalation. *^b* After transmetalation (*n*-BuLi, THF, -100 °C, 1 h) and Me₂SO₄ quench. ^{*c*} via ZnCl₂ transmetalation and Pd(OAc)₂/HBF₄ · P(t-Bu)₃ coupling.

Preliminary experiments indicate that ureas **20b**, **19**, and **21b** may be converted to imidazol(in)ium salts with phosphorus oxychloride (Scheme 6).¹⁷ For example, a heated solution of 20b in POCl₃ produced chiral imidazolinium 22, isolated as the tetraphenylborate salt. Likewise, sequential treatment of **19** or **21b** with POCl₃ and NaBPh₄ gave the 3-chloroimidazolium salts **23a**,**b**, which were immediate precursors to Pd(II) complexes **24a**,**^b** by chlorine-lithium exchange with *t*-BuLi at low temperature.¹⁸

In conclusion, it has been shown that 5-substituted pyrroloimidazol(in)ium precatalysts can be prepared in two

⁽¹⁶⁾ The pyrrolidine methyl group in *syn*-**20b** has a 13C NMR chemical shift of 18.2 ppm compared to 22.5 ppm in *anti*-**20b**. The difference in resonance frequency can be attributed to a γ -effect and may be used to assign *syn* and *anti* streochemistry in these ureas and related chiral bicyclic ketones with a high degree of confidence. See: (a) Hudlicky, T.; Koszyk, F. J.; Kutchan, T. M.; Sheth, J. P *J. Org. Chem.* **1980**, *45*, 5020. (b) Hudlicky, T.; Koszyk, F. J.; Dochwat, D. M.; Cantrell, G. L. *J. Org. Chem.* **1981**, *46*, 2911.

⁽¹⁷⁾ Review: Crouch, D. R. *Tetrahedron* **2009**, *65*, 2387.

⁽¹⁸⁾ Snead, D. R.; Ghiviriga, I.; Abboud, K. A.; Hong, S. *Org. Lett.* **2009**, *11*, 3274.

Scheme 6. Conversion of Pyrroloimidazol(in)ones to NHC Precursors **22**, **23a**, and **23b**

steps by stereoselective lithiation-electrophile quench of pyrrolo[1,2-c]imidazol(in)-3-ones **17** or **19**, followed by POCl₃-induced salt formation. These results establish a new method to access enantiomerically enriched α -chiral com-

pounds of general structure **6**, which are relatively uncommon and challenging to make by conventional routes.7 Additional work is underway to explore the utility of these materials as precursors to chiral "frustrated" Lewis pairs,¹⁹ nucleophiles and ligands in asymmetric catalysis. Procedures to remove and/or replace the N -*t*-Bu group²⁰ with other substituents are also being studied. The outcomes of these investigations will be reported as results permit.

Acknowledgment. We thank NSERC Canada for support of our research program. Prof. Travis Dudding and Keivan Taban (Brock University) are thanked for computational modeling of **17**. Josh Zaifman (Brock University) is thanked for assisting in the preparation of **21e**. We are grateful to Tim Jones and Razvan Simionescu (Brock University) for assistance with spectroscopic data collection.

Supporting Information Available: Experimental procedures, ¹ H and 13C NMR spectra, NOESY/NOE spectra, plus the minimized structure of **17**. This material is available free of charge via the Internet at http://pubs.acs.org.

OL902277Y

^{(19) (}a) Chase, P. A.; Stephan, D. W. *Angew. Chem., Int. Ed.* **2008**, *47*, 7433. (b) Holschumacher, D.; Bannenberg, T.; Hrib, C. G.; Jones, P. G.; Tamm, M. *Angew. Chem., Int. Ed.* **2008**, *47*, 7428.

⁽²⁰⁾ Wen, Y.; Zhao, B.; Shi, Y. *Org. Lett.* **2009**, *11*, 2365.